Browse Public Designs
Page: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
-
Fogtmann's kursus
Description:
Learning description for teaching M2STD1
Intended Learning Outcomes:
- Analysere spændingstilstande ved anvendelse af Mohrs cirkel
- Redegøre for flydehypoteser og anvendelsen af disse
- Redegøre for styrkeberegning med hensyn til svigtmekanismer herunder stabilitet af søjler
- Udføre spændingsberegning i bjælker med massive og tyndvæggede tværsnit - herunder skæv belastning
-
Digitale metoder til signalanalyse
Description:
I faget digital signalbehandling på Elektronik 3. semester (5 ECTS) lærer de studerende lidt om forskellige metoder til signalanalyse. De er som udgangspunkt ikke så gode til at vælge metode efter signalets beskaffenhed, og de analyseparametre, der vil være hensigtsmæssige at benytte, er de heller ikke så gode til at vælge. Formålet med læringsdesignet er at de gennem praktisk arbejde og tilhørende diskussion med andre studerende bliver bedre til begge dele.
Intended Learning Outcomes:
- Benytte den diskrete Fourier-transformation på simple digitale signaler
- Analysere frekvensspektre
- Benytte statistiske metoder til simpel stokastisk signalanalyse.
- Klassificere faglige problemer og redegøre for mulige løsninger.
- Argumentere for og implementere en valgt løsning på et fagligt problem.
- Arbejde selvstændigt og tage ansvar for egen læring og faglig fokusering.
- Kommunikere tekniske resultater til teknisk ligestillede.
-
Forbedring af et laboratorieeksperiment
Description:
Formålet med designet er at få de studerende til bedre at reflektere over og forstå øvelsesvejledninger/protokoller, inden de går i laboratoriet. Designet er målrettet nye studerende, der ikke er vante til at ’afkode’ øvelsesvejledninger; her i kurset Introducerende Bioteknologi på Ingeniørhøjskolen Aarhus Universitet.
-
Copied: Learning design in Numerical Methods
Description:
Context
The learning design described here is to be used in the 10 ECTS course Geoelektromagnetism and Numerical Methods, which is an obligatory 2nd year course at the Department of Geoscience, Aarhus University. About 20 students attend each year, constituting a mix of geology and geophysics students. Specifically, the learning design described here is intended for the part of the course covering Numerical Methods (7 weeks, 5 ETCS). This part of the course includes theory and hands-on exercises on numerical methods, and consists of a combination of lectures given by an instructor (2 x 2h per week) and theoretical exercises supervised by a teaching assistant (TØ; 3h per week). The final assessment is an oral exam where the list of questions is given beforehand.Learning design
In order to optimize the learning of the students and facilitate a deeper learning, I explore the possibility of adding new out-of-class activities, as a complement to existing lectures and TØ. These activities will mainly be implemented as online e-tivities, and I will follow the 5-stage model by Salmon (2011), in order facilitate a successful online learning experience for the students. In the first week of the course, the online e-tivities will focus on stage 1 and 2: 1) familiarize the students with the digital learning tools (discussion boards in Blackboard, making a tablet cast), and 2) promote interaction between students, whereas all following weeks will have e-tivities on stage 3-5: 3) information exchange, 4) knowledge construction, and 5) development. -
Learning design in Numerical Methods
Description:
Context
The learning design described here is to be used in the 10 ECTS course Geoelektromagnetism and Numerical Methods, which is an obligatory 2nd year course at the Department of Geoscience, Aarhus University. About 20 students attend each year, constituting a mix of geology and geophysics students. Specifically, the learning design described here is intended for the part of the course covering Numerical Methods (7 weeks, 5 ETCS). This part of the course includes theory and hands-on exercises on numerical methods, and consists of a combination of lectures given by an instructor (2 x 2h per week) and theoretical exercises supervised by a teaching assistant (TØ; 3h per week). The final assessment is an oral exam where the list of questions is given beforehand.Learning design
In order to optimize the learning of the students and facilitate a deeper learning, I explore the possibility of adding new out-of-class activities, as a complement to existing lectures and TØ. These activities will mainly be implemented as online e-tivities, and I will follow the 5-stage model by Salmon (2011), in order facilitate a successful online learning experience for the students. In the first week of the course, the online e-tivities will focus on stage 1 and 2: 1) familiarize the students with the digital learning tools (discussion boards in Blackboard, making a tablet cast), and 2) promote interaction between students, whereas all following weeks will have e-tivities on stage 3-5: 3) information exchange, 4) knowledge construction, and 5) development.Intended Learning Outcomes:
- Calculate algebraic expressions numerically, including interpolation, differentiation and integration, as well as solve equations.
- Produce curve and surface plots of mathematical functions and observed data in regular grids, read and write data on disk files, and fit analytical expressions to such data.
- Write, debug and apply elementary Matlab code in connection with the above-mentioned learning goals.
- Solve simple differential equations numerically.
- Combine and relate these electromagnetic and numerical methods for solving geoscientific problems.
Page: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53